CRUD补全计划
首页
  • Java-集合框架

    • Java集合-概述
    • Java集合-源码解析
  • Java-并发相关

    • Java并发-概述
    • Java并发-线程池
    • Java并发-锁详解
  • Java-JVM相关

    • Java-类加载机制
    • Java-垃圾回收机制
  • SQL 数据库

    • MySQL详解
    • MySQL-索引
    • MySQL-事务
  • NoSQL 数据库

    • Redis-概述
    • Redis-Zset实现原理
    • Redis-AOF与RDB
  • Spring知识体系

    • Spring-IOC概述
    • Spring-IOC源码分析
    • Spring-AOP原理详解
  • ORM框架

    • Mybatis架构
    • Mybatis执行流程
    • Mybatis缓存原理
  • RPC框架

    • Dubbo详解
  • 限流框架

    • 限流框架详解
  • Web容器

    • Tomcat详解
  • 架构基础

    • 高并发-缓存
    • 高并发-限流
  • 场景实现

    • 场景概述
    • 订单过期关闭
    • 库存扣减
  • 概述

    • 机器学习概述
    • 网站roadmap
    • 关于我
    • 友链
首页
  • Java-集合框架

    • Java集合-概述
    • Java集合-源码解析
  • Java-并发相关

    • Java并发-概述
    • Java并发-线程池
    • Java并发-锁详解
  • Java-JVM相关

    • Java-类加载机制
    • Java-垃圾回收机制
  • SQL 数据库

    • MySQL详解
    • MySQL-索引
    • MySQL-事务
  • NoSQL 数据库

    • Redis-概述
    • Redis-Zset实现原理
    • Redis-AOF与RDB
  • Spring知识体系

    • Spring-IOC概述
    • Spring-IOC源码分析
    • Spring-AOP原理详解
  • ORM框架

    • Mybatis架构
    • Mybatis执行流程
    • Mybatis缓存原理
  • RPC框架

    • Dubbo详解
  • 限流框架

    • 限流框架详解
  • Web容器

    • Tomcat详解
  • 架构基础

    • 高并发-缓存
    • 高并发-限流
  • 场景实现

    • 场景概述
    • 订单过期关闭
    • 库存扣减
  • 概述

    • 机器学习概述
    • 网站roadmap
    • 关于我
    • 友链
  • SQL数据库

    • MySQL知识概述
    • MySQL-索引
      • MySQL-事务
    • NoSQL数据库

      • Redis-概述
      • Redis-ZSet的实现原理
      • Redis-AOF与RDB
    • Database
    • SQL数据库
    zfd
    2023-04-01
    目录

    MySQL-索引

    # MySQL - 索引(B+树)

    # B+ Tree 原理

    # 1. 数据结构

    B Tree 指的是 Balance Tree,也就是平衡树。平衡树是一颗查找树,并且所有叶子节点位于同一层。

    B+ Tree 是基于 B Tree 和叶子节点顺序访问指针进行实现,它具有 B Tree 的平衡性,并且通过顺序访问指针来提高区间查询的性能。

    在 B+ Tree 中,一个节点中的 key 从左到右非递减排列,如果某个指针的左右相邻 key 分别是 keyi 和 keyi+1,且不为 null,则该指针指向节点的所有 key 大于等于 keyi 且小于等于 keyi+1。

    # 2. 操作

    进行查找操作时,首先在根节点进行二分查找,找到一个 key 所在的指针,然后递归地在指针所指向的节点进行查找。直到查找到叶子节点,然后在叶子节点上进行二分查找,找出 key 所对应的 data。

    插入删除操作记录会破坏平衡树的平衡性,因此在插入删除操作之后,需要对树进行一个分裂、合并、旋转等操作来维护平衡性。

    # 3. 与红黑树的比较

    红黑树等平衡树也可以用来实现索引,但是文件系统及数据库系统普遍采用 B+ Tree 作为索引结构,主要有以下两个原因:

    (一)更少的查找次数

    平衡树查找操作的时间复杂度等于树高 h,而树高大致为 O(h)=O(logdN),其中 d 为每个节点的出度。

    红黑树的出度为 2,而 B+ Tree 的出度一般都非常大,所以红黑树的树高 h 很明显比 B+ Tree 大非常多,检索的次数也就更多。

    (二)利用计算机预读特性

    为了减少磁盘 I/O,磁盘往往不是严格按需读取,而是每次都会预读。预读过程中,磁盘进行顺序读取,顺序读取不需要进行磁盘寻道,并且只需要很短的旋转时间,因此速度会非常快。

    操作系统一般将内存和磁盘分割成固态大小的块,每一块称为一页,内存与磁盘以页为单位交换数据。数据库系统将索引的一个节点的大小设置为页的大小,使得一次 I/O 就能完全载入一个节点,并且可以利用预读特性,相邻的节点也能够被预先载入。

    # MySQL 索引

    索引是在存储引擎层实现的,而不是在服务器层实现的,所以不同存储引擎具有不同的索引类型和实现。

    # 1. B+Tree 索引

    是大多数 MySQL 存储引擎的默认索引类型。

    因为不再需要进行全表扫描,只需要对树进行搜索即可,因此查找速度快很多。除了用于查找,还可以用于排序和分组。

    可以指定多个列作为索引列,多个索引列共同组成键。

    适用于全键值、键值范围和键前缀查找,其中键前缀查找只适用于最左前缀查找。如果不是按照索引列的顺序进行查找,则无法使用索引。

    InnoDB 的 B+Tree 索引分为主索引和辅助索引。

    主索引的叶子节点 data 域记录着完整的数据记录,这种索引方式被称为聚簇索引。因为无法把数据行存放在两个不同的地方,所以一个表只能有一个聚簇索引。

    辅助索引的叶子节点的 data 域记录着主键的值,因此在使用辅助索引进行查找时,需要先查找到主键值,然后再到主索引中进行查找。

    # 2. 哈希索引

    哈希索引能以 O(1) 时间进行查找,但是失去了有序性,它具有以下限制:

    • 无法用于排序与分组;
    • 只支持精确查找,无法用于部分查找和范围查找。

    InnoDB 存储引擎有一个特殊的功能叫“自适应哈希索引”,当某个索引值被使用的非常频繁时,会在 B+Tree 索引之上再创建一个哈希索引,这样就让 B+Tree 索引具有哈希索引的一些优点,比如快速的哈希查找。

    # 3. 全文索引

    MyISAM 存储引擎支持全文索引,用于查找文本中的关键词,而不是直接比较是否相等。查找条件使用 MATCH AGAINST,而不是普通的 WHERE。

    全文索引一般使用倒排索引实现,它记录着关键词到其所在文档的映射。

    InnoDB 存储引擎在 MySQL 5.6.4 版本中也开始支持全文索引。

    # 4. 空间数据索引

    MyISAM 存储引擎支持空间数据索引(R-Tree),可以用于地理数据存储。空间数据索引会从所有维度来索引数据,可以有效地使用任意维度来进行组合查询。

    必须使用 GIS 相关的函数来维护数据。

    # 索引优化

    # 1. 独立的列

    在进行查询时,索引列不能是表达式的一部分,也不能是函数的参数,否则无法使用索引。

    例如下面的查询不能使用 actor_id 列的索引:

    SELECT actor_id FROM sakila.actor WHERE actor_id + 1 = 5;
    
    1
    # 2. 多列索引

    在需要使用多个列作为条件进行查询时,使用多列索引比使用多个单列索引性能更好。例如下面的语句中,最好把 actor_id 和 film_id 设置为多列索引。

    SELECT film_id, actor_ id FROM sakila.film_actor
    WHERE actor_id = 1 AND film_id = 1;
    
    1
    2
    # 3. 索引列的顺序

    让选择性最强的索引列放在前面,索引的选择性是指: 不重复的索引值和记录总数的比值。最大值为 1,此时每个记录都有唯一的索引与其对应。选择性越高,查询效率也越高。

    例如下面显示的结果中 customer_id 的选择性比 staff_id 更高,因此最好把 customer_id 列放在多列索引的前面。

    SELECT COUNT(DISTINCT staff_id)/COUNT(*) AS staff_id_selectivity,
    COUNT(DISTINCT customer_id)/COUNT(*) AS customer_id_selectivity,
    COUNT(*)
    FROM payment;
    
    1
    2
    3
    4
       staff_id_selectivity: 0.0001
    customer_id_selectivity: 0.0373
                   COUNT(*): 16049
    
    1
    2
    3
    # 4. 前缀索引

    对于 BLOB、TEXT 和 VARCHAR 类型的列,必须使用前缀索引,只索引开始的部分字符。

    对于前缀长度的选取需要根据索引选择性来确定。

    # 5. 覆盖索引

    索引包含所有需要查询的字段的值。

    具有以下优点:

    • 索引通常远小于数据行的大小,只读取索引能大大减少数据访问量。
    • 一些存储引擎(例如 MyISAM)在内存中只缓存索引,而数据依赖于操作系统来缓存。因此,只访问索引可以不使用系统调用(通常比较费时)。
    • 对于 InnoDB 引擎,若辅助索引能够覆盖查询,则无需访问主索引。

    # 索引的优点

    • 大大减少了服务器需要扫描的数据行数。

    • 帮助服务器避免进行排序和分组,也就不需要创建临时表(B+Tree 索引是有序的,可以用于 ORDER BY 和 GROUP BY 操作。临时表主要是在排序和分组过程中创建,因为不需要排序和分组,也就不需要创建临时表)。

    • 将随机 I/O 变为顺序 I/O(B+Tree 索引是有序的,也就将相邻的数据都存储在一起)。

    # 索引的使用场景

    • 对于非常小的表、大部分情况下简单的全表扫描比建立索引更高效。
    • 对于中到大型的表,索引就非常有效。
    • 但是对于特大型的表,建立和维护索引的代价将会随之增长。这种情况下,需要用到一种技术可以直接区分出需要查询的一组数据,而不是一条记录一条记录地匹配,例如可以使用分区技术。
    上次更新: 2024/06/05, 22:36:57

    ← MySQL知识概述 MySQL-事务→

    Theme by Vdoing | Copyright © 2013-2025 zfd 苏ICP备2023039568号
    • 跟随系统
    • 浅色模式
    • 深色模式
    • 阅读模式