CRUD补全计划
首页
  • Java-集合框架

    • Java集合-概述
    • Java集合-源码解析
  • Java-并发相关

    • Java并发-概述
    • Java并发-线程池
    • Java并发-锁详解
  • Java-JVM相关

    • Java-类加载机制
    • Java-垃圾回收机制
  • SQL 数据库

    • MySQL详解
    • MySQL-索引
    • MySQL-事务
  • NoSQL 数据库

    • Redis-概述
    • Redis-Zset实现原理
    • Redis-AOF与RDB
  • Spring知识体系

    • Spring-IOC概述
    • Spring-IOC源码分析
    • Spring-AOP原理详解
  • ORM框架

    • Mybatis架构
    • Mybatis执行流程
    • Mybatis缓存原理
  • RPC框架

    • Dubbo详解
  • 限流框架

    • 限流框架详解
  • Web容器

    • Tomcat详解
  • 架构基础

    • 高并发-缓存
    • 高并发-限流
  • 场景实现

    • 场景概述
    • 订单过期关闭
    • 库存扣减
  • 概述

    • 机器学习概述
    • 网站roadmap
    • 关于我
    • 友链
首页
  • Java-集合框架

    • Java集合-概述
    • Java集合-源码解析
  • Java-并发相关

    • Java并发-概述
    • Java并发-线程池
    • Java并发-锁详解
  • Java-JVM相关

    • Java-类加载机制
    • Java-垃圾回收机制
  • SQL 数据库

    • MySQL详解
    • MySQL-索引
    • MySQL-事务
  • NoSQL 数据库

    • Redis-概述
    • Redis-Zset实现原理
    • Redis-AOF与RDB
  • Spring知识体系

    • Spring-IOC概述
    • Spring-IOC源码分析
    • Spring-AOP原理详解
  • ORM框架

    • Mybatis架构
    • Mybatis执行流程
    • Mybatis缓存原理
  • RPC框架

    • Dubbo详解
  • 限流框架

    • 限流框架详解
  • Web容器

    • Tomcat详解
  • 架构基础

    • 高并发-缓存
    • 高并发-限流
  • 场景实现

    • 场景概述
    • 订单过期关闭
    • 库存扣减
  • 概述

    • 机器学习概述
    • 网站roadmap
    • 关于我
    • 友链
  • Java-集合框架

    • Java集合-类关系图
    • 源码解析-ArrayList
    • 源码解析-LinkedList
    • 源码解析-Stack & Queue
    • 源码解析-PriorityQueue
      • 源码解析-HashMap
      • 源码解析-HashSet
      • 源码解析-LinkedHashMap
      • 源码解析-TreeMap & TreeSet
      • 源码解析-WeekHashMap
    • Java-并发相关

      • Java并发-概述
      • Java并发-理论基础
      • Java并发-线程池
      • Java并发-锁详解
    • Java-JVM相关

      • Java-类加载机制
      • Java-垃圾回收机制
    • Java
    • Java-集合框架
    zfd
    2023-11-21
    目录

    源码解析-PriorityQueue

    # 概述

    队列除了Stack和Queue这种先进先出、先进后出的以外,还有一种特殊的队列,PriorityQueue:按照数据的优先级存取数据。

    Java中PriorityQueue实现了Queue接口,不允许放入null元素;其通过堆实现,具体说是通过完全二叉树(complete binary tree)实现的小顶堆(任意一个非叶子节点的权值,都不大于其左右子节点的权值),也就意味着可以通过数组来作为PriorityQueue的底层实现。

    1 上图中我们给每个元素按照层序遍历的方式进行了编号。

    父子节点的编号之间有如下关系: leftNo = parentNo2+1 rightNo = parentNo2+2 parentNo = (nodeNo-1)/2

    通过上述三个公式,可以轻易计算出某个节点的父节点以及子节点的下标。这也就是为什么可以直接用数组来存储堆的原因。

    PriorityQueue的peek()和element()操作是常数时间,add()、offer()、无参数的remove()以及poll()方法的时间复杂度都是log(N)。

    # 方法解析

    # add()和offer()

    add(E e)和offer(E e)的语义相同,都是向优先队列中插入元素,只是Queue接口规定二者对插入失败时的处理不同,前者在插入失败时抛出异常,后则则会返回false。对于PriorityQueue这两个方法其实没什么差别。

    1

    新加入的元素可能会破坏小顶堆的性质,因此需要进行必要的调整。

    //offer(E e)
    public boolean offer(E e) {
        if (e == null)//不允许放入null元素
            throw new NullPointerException();
        modCount++;
        int i = size;
        if (i >= queue.length)
            grow(i + 1);//自动扩容
        size = i + 1;
        if (i == 0)//队列原来为空,这是插入的第一个元素
            queue[0] = e;
        else
            siftUp(i, e);//调整
        return true;
    }
    
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15

    上述代码中,扩容函数grow()类似于ArrayList里的grow()函数,就是再申请一个更大的数组,并将原数组的元素复制过去,这里不再赘述。需要注意的是siftUp(int k, E x)方法,该方法用于插入元素x并维持堆的特性。

    //siftUp()
    private void siftUp(int k, E x) {
        while (k > 0) {
            int parent = (k - 1) >>> 1;//parentNo = (nodeNo-1)/2
            Object e = queue[parent];
            if (comparator.compare(x, (E) e) >= 0)//调用比较器的比较方法
                break;
            queue[k] = e;
            k = parent;
        }
        queue[k] = x;
    }
    
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12

    新加入的元素x可能会破坏小顶堆的性质,因此需要进行调整。调整的过程为:从k指定的位置开始,将x逐层与当前点的parent进行比较并交换,直到满足x >= queue[parent]为止。注意这里的比较可以是元素的自然顺序,也可以是依靠比较器的顺序。

    # element()和peek()

    element()和peek()的语义完全相同,都是获取但不删除队首元素,也就是队列中权值最小的那个元素,二者唯一的区别是当方法失败时前者抛出异常,后者返回null。根据小顶堆的性质,堆顶那个元素就是全局最小的那个;由于堆用数组表示,根据下标关系,0下标处的那个元素既是堆顶元素。所以直接返回数组0下标处的那个元素即可。

    1

    代码也就非常简洁:

    //peek()
    public E peek() {
        if (size == 0)
            return null;
        return (E) queue[0];//0下标处的那个元素就是最小的那个
    }
    
    1
    2
    3
    4
    5
    6

    # remove()和poll()

    remove()和poll()方法的语义也完全相同,都是获取并删除队首元素,区别是当方法失败时前者抛出异常,后者返回null。由于删除操作会改变队列的结构,为维护小顶堆的性质,需要进行必要的调整。

    1

    代码如下:

    public E poll() {
        if (size == 0)
            return null;
        int s = --size;
        modCount++;
        E result = (E) queue[0];//0下标处的那个元素就是最小的那个
        E x = (E) queue[s];
        queue[s] = null;
        if (s != 0)
            siftDown(0, x);//调整
        return result;
    }
    
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12

    上述代码首先记录0下标处的元素,并用最后一个元素替换0下标位置的元素,之后调用siftDown()方法对堆进行调整,最后返回原来0下标处的那个元素(也就是最小的那个元素)。重点是siftDown(int k, E x)方法,该方法的作用是从k指定的位置开始,将x逐层向下与当前点的左右孩子中较小的那个交换,直到x小于或等于左右孩子中的任何一个为止。

    //siftDown()
    private void siftDown(int k, E x) {
        int half = size >>> 1;
        while (k < half) {
        	//首先找到左右孩子中较小的那个,记录到c里,并用child记录其下标
            int child = (k << 1) + 1;//leftNo = parentNo*2+1
            Object c = queue[child];
            int right = child + 1;
            if (right < size &&
                comparator.compare((E) c, (E) queue[right]) > 0)
                c = queue[child = right];
            if (comparator.compare(x, (E) c) <= 0)
                break;
            queue[k] = c;//然后用c取代原来的值
            k = child;
        }
        queue[k] = x;
    }
    
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18

    # remove(Object o)

    remove(Object o)方法用于删除队列中跟o相等的某一个元素(如果有多个相等,只删除一个),该方法不是Queue接口内的方法,而是Collection接口的方法。由于删除操作会改变队列结构,所以要进行调整;又由于删除元素的位置可能是任意的,所以调整过程比其它函数稍加繁琐。具体来说,remove(Object o)可以分为2种情况:1. 删除的是最后一个元素。直接删除即可,不需要调整。2. 删除的不是最后一个元素,从删除点开始以最后一个元素为参照调用一次siftDown()即可。此处不再赘述。

    1

    具体代码如下:

    //remove(Object o)
    public boolean remove(Object o) {
    	//通过遍历数组的方式找到第一个满足o.equals(queue[i])元素的下标
        int i = indexOf(o);
        if (i == -1)
            return false;
        int s = --size;
        if (s == i) //情况1
            queue[i] = null;
        else {
            E moved = (E) queue[s];
            queue[s] = null;
            siftDown(i, moved);//情况2
            ......
        }
        return true;
    }
    
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    上次更新: 2024/06/05, 22:36:57

    ← 源码解析-Stack & Queue 源码解析-HashMap→

    Theme by Vdoing | Copyright © 2013-2025 zfd 苏ICP备2023039568号
    • 跟随系统
    • 浅色模式
    • 深色模式
    • 阅读模式