CRUD补全计划
首页
  • Java-集合框架

    • Java集合-概述
    • Java集合-源码解析
  • Java-并发相关

    • Java并发-概述
    • Java并发-线程池
    • Java并发-锁详解
  • Java-JVM相关

    • Java-类加载机制
    • Java-垃圾回收机制
  • SQL 数据库

    • MySQL详解
    • MySQL-索引
    • MySQL-事务
  • NoSQL 数据库

    • Redis-概述
    • Redis-Zset实现原理
    • Redis-AOF与RDB
  • Spring知识体系

    • Spring-IOC概述
    • Spring-IOC源码分析
    • Spring-AOP原理详解
  • ORM框架

    • Mybatis架构
    • Mybatis执行流程
    • Mybatis缓存原理
  • RPC框架

    • Dubbo详解
  • 限流框架

    • 限流框架详解
  • Web容器

    • Tomcat详解
  • 架构基础

    • 高并发-缓存
    • 高并发-限流
  • 场景实现

    • 场景概述
    • 订单过期关闭
    • 库存扣减
  • 概述

    • 机器学习概述
    • 网站roadmap
    • 关于我
    • 友链
首页
  • Java-集合框架

    • Java集合-概述
    • Java集合-源码解析
  • Java-并发相关

    • Java并发-概述
    • Java并发-线程池
    • Java并发-锁详解
  • Java-JVM相关

    • Java-类加载机制
    • Java-垃圾回收机制
  • SQL 数据库

    • MySQL详解
    • MySQL-索引
    • MySQL-事务
  • NoSQL 数据库

    • Redis-概述
    • Redis-Zset实现原理
    • Redis-AOF与RDB
  • Spring知识体系

    • Spring-IOC概述
    • Spring-IOC源码分析
    • Spring-AOP原理详解
  • ORM框架

    • Mybatis架构
    • Mybatis执行流程
    • Mybatis缓存原理
  • RPC框架

    • Dubbo详解
  • 限流框架

    • 限流框架详解
  • Web容器

    • Tomcat详解
  • 架构基础

    • 高并发-缓存
    • 高并发-限流
  • 场景实现

    • 场景概述
    • 订单过期关闭
    • 库存扣减
  • 概述

    • 机器学习概述
    • 网站roadmap
    • 关于我
    • 友链
  • Java-集合框架

    • Java集合-类关系图
    • 源码解析-ArrayList
    • 源码解析-LinkedList
    • 源码解析-Stack & Queue
    • 源码解析-PriorityQueue
    • 源码解析-HashMap
    • 源码解析-HashSet
    • 源码解析-LinkedHashMap
    • 源码解析-TreeMap & TreeSet
    • 源码解析-WeekHashMap
    • Java-并发相关

      • Java并发-概述
      • Java并发-理论基础
      • Java并发-线程池
      • Java并发-锁详解
    • Java-JVM相关

      • Java-类加载机制
      • Java-垃圾回收机制
    • Java
    • Java-集合框架
    zfd
    2024-04-01
    目录

    源码解析-WeekHashMap

    # 概述

    在Java集合框架系列文章的最后,笔者打算介绍一个特殊的成员: WeakHashMap,从名字可以看出它是某种 Map。它的特殊之处在于 WeakHashMap 里的entry可能会被GC自动删除,即使程序员没有调用remove()或者clear()方法。

    更直观的说,当使用 WeakHashMap 时,即使没有显示的添加或删除任何元素,也可能发生如下情况:

    • 调用两次size()方法返回不同的值;
    • 两次调用isEmpty()方法,第一次返回false,第二次返回true;
    • 两次调用containsKey()方法,第一次返回true,第二次返回false,尽管两次使用的是同一个key;
    • 两次调用get()方法,第一次返回一个value,第二次返回null,尽管两次使用的是同一个对象。

    遇到这么奇葩的现象,你是不是觉得使用者一定会疯掉? 其实不然,WeakHashMap 的这个特点特别适用于需要缓存的场景。在缓存场景下,由于内存是有限的,不能缓存所有对象;对象缓存命中可以提高系统效率,但缓存MISS也不会造成错误,因为可以通过计算重新得到。

    要明白 WeakHashMap 的工作原理,还需要引入一个概念 : 弱引用(WeakReference)。我们都知道Java中内存是通过GC自动管理的,GC会在程序运行过程中自动判断哪些对象是可以被回收的,并在合适的时机进行内存释放。GC判断某个对象是否可被回收的依据是,是否有有效的引用指向该对象。如果没有有效引用指向该对象(基本意味着不存在访问该对象的方式),那么该对象就是可回收的。这里的有效引用 并不包括弱引用。也就是说,虽然弱引用可以用来访问对象,但进行垃圾回收时弱引用并不会被考虑在内,仅有弱引用指向的对象仍然会被GC回收。

    WeakHashMap 内部是通过弱引用来管理entry的,弱引用的特性对应到 WeakHashMap 上意味着什么呢?将一对key, value放入到 WeakHashMap 里并不能避免该key值被GC回收,除非在 WeakHashMap 之外还有对该key的强引用。

    关于强引用,弱引用等概念以后再具体讲解,这里只需要知道Java中引用也是分种类的,并且不同种类的引用对GC的影响不同就够了。

    # 源码实现

    WeakHashMap的存储结构类似于前文讲解的HashMap的源码(几乎一模一样)这里不再赘述。需要注意的是,WeekHashMap之所以能实现弱引用的实现,关键点就是在他内部的Entry结构

    //可以看到 Entry 继承了 WeakReference ,实现了key/value的 的弱引用
    private static class Entry<K,V> extends WeakReference<Object> implements Map.Entry<K,V> {
        V value;
        final int hash;
        Entry<K,V> next;
    
        /**
         * Creates new entry.
         */
        Entry(Object key, V value,
              ReferenceQueue<Object> queue,
              int hash, Entry<K,V> next) {
            super(key, queue);
            this.value = value;
            this.hash  = hash;
            this.next  = next;
        }
     }
    
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18

    说了那么多可能还是没有概念,写个测试代码

    
    import java.util.HashMap;
    import java.util.Map;
    import java.util.WeakHashMap;
    
    public class WeakHashMapExample {
        public static void main(String[] args)throws Exception {
            Map<Object, String> weakHashMap = new WeakHashMap<>();
            Object key = new Object();
            
            weakHashMap.put(key, "value");
    
            // 在这里,key 还有一个强引用指向它
            System.out.println(weakHashMap.containsValue("value")); // 输出 true
    
            // 移除强引用
            key = null;
            // 垃圾收集器可能会运行
            System.gc();
            Thread.sleep(1000L);
            // 如果没有其他强引用指向原始的 key,weakHashMap 可能不再包含之前的键值对
            System.out.println(weakHashMap.containsValue("value")); // 可能输出 false
    
    
    
            Map<Object, String> hashMap = new HashMap<>();
            Object key2 = new Object();
    
            hashMap.put(key2, "value");
    
            // 在这里,key 还有一个强引用指向它
            System.out.println(hashMap.containsValue("value")); // 输出 true
    
            // 移除强引用
            key2 = null;
            System.gc();
            Thread.sleep(1000L);
            System.out.println(hashMap.containsValue("value"));
        }
    }
    
    输出
    true
    false
    true
    true
    
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46

    可以看到移除了key的强引用后WeekHashMap清除了对应的kv,而HashMap则不会。

    关于强弱引用的管理方式,这里简单的讲解下,在JVM GC部分会详细讲解。

    # 引用类型

    无论是通过引用计算算法判断对象的引用数量,还是通过可达性分析算法判断对象是否可达,判定对象是否可被回收都与引用有关。

    Java 具有四种强度不同的引用类型。

    # 1. 强引用

    被强引用关联的对象不会被回收。

    使用 new 一个新对象的方式来创建强引用。

    Object obj = new Object();
    
    1

    # 2. 软引用

    被软引用关联的对象只有在内存不够的情况下才会被回收。

    使用 SoftReference 类来创建软引用。

    Object obj = new Object();
    SoftReference<Object> sf = new SoftReference<Object>(obj);
    obj = null;  // 使对象只被软引用关联
    
    1
    2
    3

    # 3. 弱引用

    被弱引用关联的对象一定会被回收,也就是说它只能存活到下一次垃圾回收发生之前。

    使用 WeakReference 类来实现弱引用。

    Object obj = new Object();
    WeakReference<Object> wf = new WeakReference<Object>(obj);
    obj = null;
    
    1
    2
    3

    # 4. 虚引用

    又称为幽灵引用或者幻影引用。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用取得一个对象。

    为一个对象设置虚引用关联的唯一目的就是能在这个对象被回收时收到一个系统通知。

    使用 PhantomReference 来实现虚引用。

    Object obj = new Object();
    PhantomReference<Object> pf = new PhantomReference<Object>(obj);
    obj = null;
    
    1
    2
    3

    # Weak HashSet?

    如果你看过前几篇关于 Map 和 Set 的讲解,一定会问: 既然有 WeakHashMap,是否有 WeekHashSet 呢? 答案是没有。不过Java Collections工具类给出了解决方案,Collections.newSetFromMap(Map<E,Boolean> map)方法可以将任何 Map包装成一个Set。通过如下方式可以快速得到一个 Weak HashSet:

    // 将WeakHashMap包装成一个Set
    Set<Object> weakHashSet = Collections.newSetFromMap(
            new WeakHashMap<Object, Boolean>());
    
    1
    2
    3

    不出你所料,newSetFromMap()方法只是对传入的 Map做了简单包装:

    // Collections.newSetFromMap()用于将任何Map包装成一个Set
    public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) {
        return new SetFromMap<>(map);
    }
    
    private static class SetFromMap<E> extends AbstractSet<E>
        implements Set<E>, Serializable
    {
        private final Map<E, Boolean> m;  // The backing map
        private transient Set<E> s;       // Its keySet
        SetFromMap(Map<E, Boolean> map) {
            if (!map.isEmpty())
                throw new IllegalArgumentException("Map is non-empty");
            m = map;
            s = map.keySet();
        }
        public void clear()               {        m.clear(); }
        public int size()                 { return m.size(); }
        public boolean isEmpty()          { return m.isEmpty(); }
        public boolean contains(Object o) { return m.containsKey(o); }
        public boolean remove(Object o)   { return m.remove(o) != null; }
        public boolean add(E e) { return m.put(e, Boolean.TRUE) == null; }
        public Iterator<E> iterator()     { return s.iterator(); }
        public Object[] toArray()         { return s.toArray(); }
        public <T> T[] toArray(T[] a)     { return s.toArray(a); }
        public String toString()          { return s.toString(); }
        public int hashCode()             { return s.hashCode(); }
        public boolean equals(Object o)   { return o == this || s.equals(o); }
        public boolean containsAll(Collection<?> c) {return s.containsAll(c);}
        public boolean removeAll(Collection<?> c)   {return s.removeAll(c);}
        public boolean retainAll(Collection<?> c)   {return s.retainAll(c);}
        // addAll is the only inherited implementation
        ......
    }
    
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    上次更新: 2024/11/06, 02:51:54

    ← 源码解析-TreeMap & TreeSet Java并发-概述→

    Theme by Vdoing | Copyright © 2013-2025 zfd 苏ICP备2023039568号
    • 跟随系统
    • 浅色模式
    • 深色模式
    • 阅读模式